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FINAL REPORT

GRANT #: N00014-98-1-0093

PRINCIPAL INVESTIGATOR: Dr. Nadrian C. Seeman

INSTITUTION: New York University

GRANT TITLE: Macromolecular Design

AWARD PERIOD: Jan 01, 2002 - 30 Sep, 2004

OBJECTIVE: To develop and extend the methods of DNA
nanotechnology to gain control over the structure of matter in 2D
and in 3D and to produce DNA-based nanorobots.

APPROACH; Branched DNA motifs are designed by use of an algorithm
that minimizes sequence symmetry. Oligonucleotides corresponding
to these sequences are then assembled. These motifs are then
assembled primarily by using cooling protocols. The resulting
structures are examined by AFM, by gel electrophoresis or by X-ray
diffraction, as appropriate to the target construct.

ACCOMPLISHMENTS:

Advances in Algorithmic Assembly: We have demonstrated successful
algorithmic assembly leading to a cumulative XOR calculation (#1).
This was a major step in DNA self-assembly, the first time that
algorithmic assembly was demonstrated. Having shown the
feasibility of aperiodic assembly, we have participated in several
studies in the theory of aperiodic self-assembly (#13, #16, #26,
#32, #33, #39) and other aspects of DNA-based computation (#41);
this work include experimental studies (#20, #23, #29, #35) that
entail making irregular graphs from DNA. '

2D and 3D Arrays: We have developed (#3) and applied (#22) a
quantitative ligation-closure method to demonstrate that the DX
motif is about twice as stiff as ordinary DNA. We have used this
information to develop robust geometrical motifs, such as the DX-
triangle (#44), which forms a honey-comb array. This is a decade-~

old goal, on which we failed repeatedly before finally achieving
this success.

We have been engaged in crystallographic studies during the
current project period, partly to establish the nature of the 3D

materials that we have built. Our preliminary results (#45)
demonstrate the correct unit cell dimensions and space groups for
a motif containing tensegrity triangles. As suggested by the

results for the pseudo-hexagonal system, we are building DX
versions of these triangles and we will use them to try to build
crystals. We have also discovered new parallel non-Watson-Crick
pairing motifs in the crystal structure of a DNA 13-mer (#42).

We were successful in demonstrating our specific aim of paranemic
cohesion (#14), but this approach has not yet been shown to be
useful in array construction. We are trying to get it to work in
2D.




We used AFM to demonstrate successfully the structure of 'Bowtie'
junctions (#2), demonstrating the robustness of the parallelogram
motif in V-shaped and 2D arrays.

Nanomechanical Devices: We have established general principles
for the creation of motifs in DNA (#7); it is now straightforward
to develop new motifs for different purposes, as demonstrated by
our development of the PX motif (#31) and its used in both
paranemic cohesion (#14), and, more importantly, in the
development of the robust sequence-dependent PX-JX, device (#8).
The development of PX-JX, device required the constructlon of edge-
sharing motifs (#21) for its demonstration by AFM.

A second device that we developed is a prototypical nanorobot that
walks on a sidewalk (#36). Using the Yurke method of strand
removal, its attachment points to the sidewalk are altered in the
course of its taking a step.

A third device measures the amount of work a DNA-distorting
protein can perform as a consequence of binding to its target
(#43). This device was prototyped with integration host factor
(IHF), and is similar to a B-Z device developed in a previous
project period. IHF binds to its recognition site, and distorts
the DNA there. However, to do so, it must break base pairs, so
that the amount of work it can do can be estimated by the load
against which it cannot work.

We have also prototyped a translational device based on the PX-JX,
device. It contains two such devices separating two clamps that
can contain a DX motif with a continuous strand. The two
different devices 1lead to four different states, and four
different polymers, although in this case the polymers are all
DNA. As a consequence of the strands added to set the states of
the two devices, a variety of different polymers are made (#46).

Scaffolding Non-DNA Materials: For several project periods, we
have suggested that DNA nanotechnology would be a feasible method
for scaffolding other materials. During this project period, we
have begun to prototype this <chemistry +through various
collaborators. These efforts have led to the organization of gold
nanoparticles (with Rick Kiehl of Minnesota) (#15) and the
scaffolding of industrial polymers on a nucleic acid backbone

(with Jim Canary of NYU) (#17, #25). In addition, we have
explored neutralizing components of DNA arrays by incorporating
peptide-nucleic acid units (PNA) with the arrays (#37). The

essence of these studies is the addition of functionality to
nucleic acid arrays.

Dissemination of Progress:

The development of structural DNA nanotechnology has struck the
fancy of the scientific community, resulting in many requests for
review articles (#4, #5, #6, #9, #10, #11, #12, #18, #19, #24,
#27, #28, #30, #34, #38, #40), where # is the serial number in the
publications list.



CONCLUSIONS: Structurally based DNA nanotechnology has been shown
to be an extremely potent method of controlling the structure of
matter on the nanometer scale. Particularly noteworthy advances
during this project period include the establishment of the
robustness of DX cohesion (#44), the construction of robust
sequence-dependent devices (#8 and #46), the use of DNA in
algorithmic assembly (#1), the development of paranemic cohesion
(#14), the one-pot synthesis of an irreqular graph (#35), and the
incorporation of non-DNA materials in DNA-based constructs.

SIGNIFICANCE: The results presented here demonstrate that DNA-
based nanotechnology is a powerful way of creating designed
structures and devices.
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